翻訳と辞書
Words near each other
・ Flory Cirque
・ Flory convention
・ Flory Díez
・ Flory Jagoda
・ Flory Van Donck
・ Flory-Stockmayer Theory
・ Florya
・ Florya Atatürk Marine Mansion
・ Florya Metin Oktay Sports Complex and Training Center
・ Florynce Kennedy
・ Florynka
・ Florynki
・ Flory–Fox equation
・ Flory–Huggins solution theory
・ Flory–Rehner equation
Flory–Schulz distribution
・ Florânia
・ Floréal
・ Floréal-class frigate
・ Florémont
・ Florêncio Carlos de Abreu e Silva
・ Florínea
・ Florø
・ Florø Airport
・ Florø Church
・ Florø Radio
・ Florø SK
・ Florø Stadion
・ Florø TIF
・ Flos


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Flory–Schulz distribution : ウィキペディア英語版
Flory–Schulz distribution

\log (1-a)}\right)}-\frac
| mode = -\frac
| variance = \frac
| skewness = \frac
| entropy =
| mgf = \frac
| char = \frac\right)^2}
| pgf = \frac
}}
The Flory–Schulz distribution is a mathematical function named after Paul Flory and G. V. Schulz that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. The probability mass function (pmf) can take the form of:
:f_a(k) = a^2 k (1-a)^
In this equation, ''k'' is a variable characterizing the chain length (e.g. number average molecular weight, degree of polymerization), and ''a'' is an empirically-determined constant.
The form of this distribution implies is that shorter polymers are favored over longer ones. Apart from polymerization processes, this distribution is also relevant to the Fischer–Tropsch process that is conceptually related, in that lighter hydrocarbons are converted to heavier hydrocarbons that are desirable as a liquid fuel.
The pmf of this distribution is a solution of the following equation:
:\left\
(a-1) (k+1) f(k)+k f(k+1)=0, \\()
f(0)=0,f(1)=a^2
\end\right\}

==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Flory–Schulz distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.